Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation
نویسندگان
چکیده
The imminent use of hydrogen as an energy vector establishes the need for sustainable production technologies based on renewable resources. Starch is an abundant renewable resource suitable for bio-hydrogen generation. It was hypothesised that starch hydrolysates from a large (250 mL) hydrothermal reactor could support bioH2 fermentation without inhibition by toxic byproducts. Starch was hydrolysed at high concentrations (40-200 g.L -1 ) in hot compressed water (HCW) with CO2 at 30 bar in a 250 mL reactor, the largest so far for polysaccharide hydrolysis, at 180-235 °C, 15 min. Hydrolysates were detoxified with activated carbon (AC) and tested in biohydrogen fermentations. The maximum yield of glucose was 548 g.kg starch -1 carbon at 200 °C. 5-hydroxymethyl furfural, the main fermentation inhibitor, was removed by AC to support 70% more hydrogen production than the untreated hydrolysates. The potential utilization of starch hydrolysates from HCW treatment for upscaled fermentations is promising.
منابع مشابه
Amylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour
Nine Aspergillus and three of Trichoderma strains were grown on wheat bran (WB) medium under solid state fermentation (SSF) for amylase production. Aspergillus oryzae LS1 produced the highest level of the enzyme. The thermal stability profile of its crude enzyme revealed the half-life time of more than 2 h at 50 and 60ºC. The enzyme production was affected by strain type, incubation periods, le...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملControl of fermentation of lignocellulosic hydrolysates
In this work substrate feeding rate to a fermentation of lignocellulose hydrolysate for production of ethanol has been studied. During hydrolysis of lignocellulose inhibitors are formed that effect the microorganism (here Saccharomyces cerevisiae) that ferments the sugar to ethanol in a negative way. To make the hydrolysate fermentable the inhibitors are often removed by detoxification prior to...
متن کاملKinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes
Kinetic models which can express the behaviors of hydrolysis and biogas generation more precisely than the conventional models were developed. The developed models were evaluated based on the experimental data of six batch reactors. Anaerobic digestion test was co-digestion of food and vegetable waste with inoculating horse dung by 15% of the total wet weight, at the temperature of 37o</su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012